

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2019/0170631 A1 Shachar et al.

Jun. 6, 2019 (43) Pub. Date:

(54) SURFACE ACOUSTIC WAVE BIOSENSOR EMPLOYING AN ANALOG FRONT END AND DNA ENCODED LIBRARIES TO IMPROVED LIMIT OF DETECTION (LOD) WITH EXEMPLARY APPARATUS OF THE SAME

(71) Applicant: Sensor Kinesis Corporation, Los Angeles, CA (US)

(72) Inventors: Yehoshua Shachar, Santa Monica, CA (US); Roger Kornberg, Atherton, CA (US)

(21) Appl. No.: 16/325,291

(22) PCT Filed: Aug. 22, 2017

(86) PCT No.: PCT/US2017/048055

§ 371 (c)(1),

(2) Date: Feb. 13, 2019

Related U.S. Application Data

(60) Provisional application No. 62/397,233, filed on Sep. 20, 2016.

Publication Classification

(51) Int. Cl. G01N 15/06 (2006.01)C12N 15/10 (2006.01)G01N 33/53 (2006.01)

(52)U.S. Cl.

CPC . G01N 15/0606 (2013.01); G01N 2015/0065 (2013.01); G01N 33/5306 (2013.01); C12N 15/1037 (2013.01)

ABSTRACT (57)

A surface acoustic wave (SAW) performs a rapid, label-free detection of biological species. Biosensing and detection of multiple analytes multiplexed by an array of sensing lanes is configured to enable bio-amplification using engineered DNA encoded libraries as the probe through a phage display procedure to enhance specificity, capture statistics for the detection, screening and analyzing of the analyte in vitro. A biochemical formulation minimizes the limit of detection (LOD) at a threshold magnitude on the order of a femtomolar concentration. Additional enhancement of the apparatus is achieved by use of an analog front end to amplify biochemical events.

